

ESCOM

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

SYNTHESIZED SCHOOL PROGRAM

ACADEMIC UNIT:	Escuela Superior de Cómputo	
ACADEMIC PROGRAM:	Ingeniería en Sistemas Computacionales	
LEARNING UNIT:	Unsupervised Neural Networks	LEVEL: III

AIM OF THE LEARNING UNIT:

The student builds computer systems of information clustering and pattern classification based on Unsupervised Neural Networks technology.

CONTENTS:

- I. Overview of Neural Networks.
- II. Unsupervised learning rules.
- III. Self-organized neural networks.
- IV. Associative models.
- v. Construction of unsupervised neural networks on programmable devices.

TEACHING PRINCIPLES:

The teacher will apply a Projects-Based learning process, through inductive and heuristic methods using analysis techniques, technical data, organization charts, cooperative presentation, exercise-solving and the production of the learning evidences. It will encourage teamwork and individual integrity and responsibility to the environment. Moreover, an autonomous learning will be encouraged by the development of a final project.

EVALUATION AND PASSING REQUIREMENTS:

The program will evaluate the students in a continuous formative and summative way, which will lead into the completion of learning portfolio. Some other assessing methods will be used, such as revisions, practical's, class participation, exercises, learning evidences and a final project.

Unit Learning can also be approved through::

- Evaluation of acknowledges previously acquired, by developing a computer program and a written evidence of learning
- Official recognition by either another IPN Academic Unit of the IPN or by a national or international external academic institution besides IPN with a current cooperation a agreement.

REFERENCES:

- Demouth H., Beale M., Hagan M. (2009). Matlab Neural Network Toolbox 6 User's Guide. The Matworks, Inc, USA. on line only (16/marzo/2011).
 www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf.
- Hagan, M. T. Demuth, H. B. Beale, M. (2002). *Neural Network Design*. USA: PWS Publishing Company. ISBN-13: 978-0534943325.
- Haykin, S. (2009). *Neural Networks and Learning Machines*. (3^a Edition). USA: Prentice Hall. ISBN: 13: 978-0-13-147139-9.
- Ham, F. M. Kostanic, I. (2001). *Principles of Neurocomputing for Science & Engineering*. New York USA: Mc Graw-Hill. ISBN 0-07-025966-6.
- Omondi A. R., Rajapakse J. C. (2006). FPGA Implementation of Neural Networks, Springer, Dordrecht, The Netherlands. ISBN -10: 0-387-28485-0 (HB)

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

ACADEMIC UNIT: Escuela Superior de Cómputo. ACADEMIC PROGRAM: Ingeniería en Sistemas Computacionales LATERAL OUTPUT: Analista Programador de Sistemas de Información. FORMATION AREA: Professional. MODALITY: Presence. LEARNING UNIT: Unsupervised Neural Networks. TYPE OF LEARNING UNIT: Theorical - Practical, Optative. VALIDITY: August, 2011 LEVEL: III. CREDITS: 7.5 Tepic, 4.39 SATCA

ACADEMIC AIM

This program contributes to the profile of graduated on Ingeniería en Sistemas Computacionales, to develop the skills to design computer systems based on unsupervised neural networks for solving computational problems in engineering related to the grouping of information and pattern classification, the ability to describe and to distinguish the major unsupervised network architectures, the ability to implement intelligent systems in integrated circuits, ability to design and simulate intelligent systems.

It also helps to develop generic skills such as strategic thinking, creative thinking, collaborative and participatory work, assertive communication, contributing to their integral development, so The student will be able to perform in different sectors of society, public private research and integrate and manage internal work teams and multidisciplinary with an attitude of leadership, ethics and responsibility. The student is continuously updated to meet the needs of society and sustainable development of the country

It is based on the programs of linear algebra, calculus, algorithms and structured programming, analysis and objectoriented design, and software engineering. It is related laterally to pattern recognition, artificial intelligence, genetic algorithms, Fuzzy Systems Engineering, Computational Intelligence in Control Engineering and Unsupervised Artificial Neural Networks. This supports subsequent to the learning units Terminal Work I and II.

AIM OF THE LEARNING UNIT:

The student builds computer systems of information clustering and pattern classification based on Unsupervised Neural Networks technology.

CREDITS HOURS

THEORETICAL CREDITS / WEEK: 3.0

PRACTICAL CREDITS / WEEK: 1.5

THEORETICAL HOURS / SEMESTER: 54

PRACTICAL HOURS / SEMESTER: 27

AUTONOMOUS LEARNING HOURS: 54

CREDITS HOURS / SEMESTER: 81

LEARNING UNIT DESIGNED BY: Academia de Ingeniería de software.

REVISED BY: Dr. Flavio Arturo Sánchez Garfias. Subdirección Académica

APPROVED BY: Ing. Apolinar Francisco Cruz Lázaro. Presidente del CTCE AUTHORIZED BY: Comisión de Programas Académicos del Consejo General Consultivo del IPN

Ing. Rodrigo de Jesús Serrano Domínguez Secretario Técnico de la Comisión de Programas Académicos

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Unsupervised Neural Networks

PAGE: 3 **OUT OF** 10

TITLE: Overview of Neural Networks

THEMATIC UNIT: |

UNIT OF COMPETENCE

The student classifies the fundamental concepts of unsupervised artificial neural networks based on the characteristics that define them.

No.	CONTENTS		acher led-Auto structionLea HOURSHO		omous ning JRS	REFERENCES KEY
		Т	Р	Т	Р	
1.1	Historical review of unsupervised artificial neural networks.	3.0	1.0	6.0	3.0	3B, 4B, 7B
1.2	Definitions of neural networks					
1.3	The biological neuron model.					
1.4	The artificial neural network model.					
1.5	General Characteristics of unsupervised neural networks.					
1.6	Applications of unsupervised neural networks.					
1.7	Types of unsupervised learning					
	Subtotals:	3.0	1.0	6.0	3.0	
	TEACHING PRINC	CIPLES				
This the	natic unit must start in the frame of the course and team	building	. Thema	tic unit will	be addres	sed through the
strategy	of project-based learning using the inductive method.	This un	it uses l	earning te	chniques s	such as concept

strategy of project-based learning, using the inductive method; This unit uses learning techniques such as concept mapping, cognitive maps, worksheets, presentation of additional issues, development of practice and final project proposal.

	LEARNING EVALUATION
Diagnostic Test	
Project Portfolio:	
Project proposal	5%
Graphic Organizers	5%
Documentary research	5%
Worksheet	5%
Exposure themes	10%
Report of Practical	20%
Self-Evaluation Rubrics	5%
Cooperative-evaluation Rubrics	5%
Written Learning Evidence	40%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Unsupervised Neural Networks

PAGE: 4 **OUT OF** 10

THEMA	TIC UNIT: II	Т	TTLE: UI	nsupervise	d learning	rules
	UNIT OF COMPET	ENCE				
The stu	dent classifies unsupervised learning algorithms based	on the a	architectu	ure of uns	upervised	Artificial Neural
Network	is					
		Teach	er led-	Auton	omous	
No.	CONTENTS	Instru HO	uction URS	Learning HOURS		REFERENCES KEY
		Т	Р	Т	Р	_
2.1	Unsupervised learning.	0.5		1.0		3B, 4B, 7B,
2.1.1	Unsupervised learning Concept					12B, 2C
2.1.2	Unsupervised learning classes.					
2.1.3	Unsupervised network architectures.					
2.2	Associative learning.	2.0	0.5	3.0	2.0	
2.2.1	Associative learning concepts					
2.2.2	Simple associative network.					
2.2.3	Unsupervised Hebb rule.					
2.2.4	Hebb rule with decay.					
2.2.5	Instar rule.					
2.2.6	Kohonen rule.					
2.2.7	Outstar rule.					
2.2.8	Examples and exercises using the associative rules					
2.2.9	Associative rules simulation in Matlab / Neural Network					
	Toolbox (NNT).					
2.3	Competitive learning.	1.5	1.0	3.0	2.0	
2.3.1	Concept of competitive learning.					
2.3.2	Simple competitive network.					
2.3.3	Examples and classification exercises using the simple					
	competitive network					
2.3.4	Competitive network simulation in Matlab / NNT					
	Subtotales:	4.0	1.5	7.0	4.0	
<u> </u>	TEACHING PRINC	IPLES				
This un	it will be addressed through the strategy of project-base	d learn	ing, usin	g the indu	ictive met	nod also will be
added c	concept mapping techniques, cognitive maps, exercises-s	olving, e	exposure	e of issues	, developr	nent of practical
program	iming algorithms, and advance final project.					
	LEARNING EVALU	ATION				

	LEAP
Project Portfolio	
Graphic Organizers	5%
Exercise delivery	5%
Exposure themes	5%
Report of Practical	20%
Program delivery	10%
Advance of the Project	5%
Self-Evaluation Rubrics	5%
Cooperative-evaluation Rubrics	5%
Written Learning Evidence	40%
-	

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Written Learning Evidence

30%

Unsupervised Neural Networks

PAGE: 5 **OUT OF** 10

THEMAT				TITLE: Sel	f-organized	neural networks	
	UNIT OF COMPE	TENCE					
The student solves problems of information clustering and classification of complex patterns based on learning							
algorithm	is and architectures of self-organized neural networks.						
		HO	URS	HU			
Ν.				Activi	ties of		
NO.	CONTENTS	with		Auton	omous	REFERENCES KEY	
			essor	Lea	rning	-	
0.4		1	<u>Р</u>	I	P	00 40 70 400	
3.1	Learning Vector Quantization (LVQ)	1.0	0.5	2.0	1.5	3B, 4B, 7B, 12B,	
3.1.1	General features LVQ network					20, 100,110	
3.1.2	LVQ network architecture						
3.1.3	LVQ learning algorithm						
3.1.4 2.1.5	Main applications of the LVQ hetwork						
3.1.3	LVQ classification exercises						
3.1.0	SITUATION AND RAINING OF THE LVQ HELWOR IN WATLAD /	1.0	0.5	2.0	15		
3.Z 2.2.1	INN I The Kebenen self organizing man (SOM)	1.0	0.5	2.0	1.5		
3.2.1	Concred factures of the SOM						
3.2.2	SOM architecture						
3.2.3	SOM learning algorithm						
3.2.4	Main Applications of SOM						
326	Classification exercises using SOM						
33	Simulation and training of SOM in MATLAB / NNT	10	0.5	2.0	1.0		
331	Adaptive Resonance Theory (ART)	1.0	0.5	2.0	1.0		
332	General features ART network						
333	ART network architecture						
334	ART learning algorithm						
335	Main applications of the ART network						
336	Classification exercises using ART						
3.4	Simulation and training of the ART network MATLAB / NNT	10		10			
3.4.1	Principal Component Analysis (PCA)						
3.4.2	PCA General features						
3.4.3	PCA Architecture						
3.4.4	PCA algorithms						
3.4.5	PCA Applications						
3.4.6	PCA exercises						
	Simulation of PCA						
	Subtotals:	4.0	1.5	7.0	4.0		
	TEACHING PRINC						
This unit	will be addressed through the strategy of project-based learn	ing, usin	ng the inc	luctive meth	nod also will	be added concept	
mapping t	echniques, cognitive maps, exercises-solving, exposure of iss	ues, dev	elopment	t of practica	l, programm	ing algorithms, and	
advance f	inal project.						
		JATION					
Project Po	ortfolio:						
Gi	raphic Organizers 5%						
E>	kercise delivery 10%						
E>	kposure themes 5%						
Re	eport of Practical 20%						
Pr	ogram delivery 10%						
Ac	avance of the Project 10%						
Se	elt-Evaluation Rubrics 5%						
Co	poperative-evaluation Rubrics 5%						

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Unsupervised Neural Networks

PAGE: 6 **OUT OF** 10

N° THEMATIC UNIT: IV **TITLE:** Associative models UNIT OF COMPETENCE The student solves optimization problems and the implementation of associative memories based on learning algorithms and architectures for unsupervised neural networks **Teacher led-**Autonomous Instruction Learning REFERENCES **CONTENTS** No. HOURS HOURS KEY Т Ρ Ρ Т 4.1 Linear Associative Memory (LAM) 1.5 0.5 2.0 1.0 3B, 4B, 7B, 4.1.1 LAM General features. 12B 412 LAM architecture 20 50 60

4.1.2						20,30, 00
4.1.3	Learning algorithm.					
4.1.4	LAM applications.					
4.1.5	Pattern Recognition exercises					
4.1.6	LAM simulation and training					
4.2	Hopfield network	1.5	0.5	3.0	2.0	
4.2.1	Hopfield network general characteristics					
4.2.2	Hopfield network architecture.					
4.2.3	Hebbian learning algorithm.					
4.2.4	Hopfield network stability					
4.2.5	Main Applications of Hopfield network.					
4.2.6	Pattern classification exercises and Troubleshooting					
4.2.7	Optimization.					
4.3	Simulation and training of the Hopfield network in	1.0	0.5	2.0	1.0	
4.3.1	MATLAB / NNT					
4.3.2	Bidirectional Associative Memory (BAM)					
4.3.3	BAM general characteristics					
4.3.4	BAM architecture.					
4.3.5	Learning algorithm.					
4.3.6	BAM applications.					
	Pattern recognition exercises					
	BAM training simulation.					
	Subtotales:	4.0	1.5	7.0	4.0	
			1	1	1	

TEACHING PRINCIPLES

This unit will be addressed through the strategy of project-based learning, using the inductive method also will be added concept mapping techniques, cognitive maps, exercises-solving, exposure of issues, development of practical, programming algorithms, and advance final project.

LEARNING EVALUATION					
Project Portfolio:					
Graphic Organizers	5%				
Exercise delivery	10%				
Exposure themes	5%				
Report of Practical	20%				
Program delivery	10%				
Advance of the Project	5%				
Self-Evaluation Rubrics	5%				
Cooperative-evaluation Rubrics	5%				
Written Learning Evidence	30%				

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNI	NG UNIT: Unsupervised Neural Networks			PAG	E : 7	OUT OF 10			
THEMA	THEMATIC UNIT: V TITLE: Construction of unsupervised neural networks on programmable devices								
The stud	UNIT OF COMPETENCE								
No.	CONTENTS		Teacher led- Instruction HOURS		omous ming URS	REFERENCES KEY			
		Т		Т	Р				
5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.2 5.2 1	Fundamentals of programmable devices. Introduction. General Features Classification Overview of design and simulation tools. Fundamentals of embedded systems. Introduction	0.5 0.5		1.0		1C, 8C, 9C,			
5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.3.2	Definition. Features Examples of embedded systems Main architectures for self-monitoring neural network construction. Introduction.	2.0		2.0	2.5				
5.3.3 5.3.4 5.4 5.4.1 5.4.2 5.4.3	General Features. Unsupervised neural network construction. Unsupervised neural network simulation Unsupervised Neural Network Implementation on Programmable Devices Unsupervised Neural Network design and simulation on programmable devices Dedicated design implementation. Soft-core implementation	2.0	1.5	3.0	2.5				
	Subtotales:	5.0	15	7.0	5.0				
Subiotales: 5.0 1.5 7.0 5.0 TEACHING PRINCIPLES This unit will be addressed through the strategy of project-based learning, using the inductive method also will be added concept mapping techniques, cognitive maps, exercises-solving, exposure of issues, development of practical, programming algorithms, and final project.									
Broject I	LEARNING EVALU	ATION							
FTOJECT E F F F S C V	Exposure themes10%Practice Report20%Program delivery15%Final project30%Self-Evaluation Rubrics5%Cooperative-evaluation Rubrics5%Vritten Learning Evidence15%								

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Unsupervised Neural Networks

RECORD OF PRACTICALS

No.	NAME OF THE PRACTICAL	THEMATIC UNITS	DURATION	ACCOMPLISHMENT LOCATION
1	Basic neural models.	I	4.0	Computer Labs.
2	Associative learning rules.	Ш	2.5	
3	Simple Competitive network.	II	3.0	
4	Kohonen self-organizing maps	III	2.0	
5	LVQ networks.	III	2.0	
6	Adaptive Resonance Theory.	III	1.5	
7	Associative Memories.	IV	5.5	
8	Implementation of Unsupervised Neural Networks on Programmable devices.	V	6.5	
		TOTAL OF HOURS	27.0	

EVALUATION AND PASSING REQUIREMENTS:

The practical are considered mandatory to pass this unit of learning.

The practical mean 20% in each thematic unit.

The practices contribute 20% of the final grade.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

LEARNING UNIT:

Unsupervised Neural Networks

PERÍOD	UNIT		EVALUATION TERMS							
1	I, II	Continuous	evaluation 60% and written learning evidence 40%							
2	III, IV	Continuous	ontinuous evaluation 70% and written learning evidence 30%							
3	V	Continuous	evaluation 85% and written learning evidence 15%							
		The Learning	n unit L is 15% worth of the final score							
		The Learning	e Learning unit II is 15% worth of the final score							
		The Learning	g unit III is 15% worth of the final score							
		The Learning	Learning unit IV is 15% worth of the final score							
		The Learning	Learning unit V is 40% worth of the final score							
			t can also be approved through:							
		• Eva	aluation of acknowledges previously acquired, by developing a computer program							
		and	l a written evidence of learning							
		• Offi	cial recognition by either another IPN Academic Unit of the IPN or by a national or							
		inte	rnational external academic institution besides IPN agreement which has.							
		If accredite	ed by Special Assessment or a certificate of proficiency, this will include a							
		practical p	art which contribute 50% of the grade and a theoretical part that will provide							
	В									
	В	L X	Chu P. P. (2008) EPGA Prototyping by VHDL Examples Xilinx Spartan-3 version USA:							
		~	Wiley-Interscience. ISBN 10:-0470185317.							
2		Х	Demouth H., Beale M., Hagan M. (2009). Matlab Neural Network Toolbox 6 User's Guide.							
			The Matworks, Inc, USA. on line only (19/Nov/2009). www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf							
3	х		Hagan M. T., Demuth H. B., Beale M. (2002) Neural Network Design. PWS Publishing							
			Company. USA. 1-665. ISBN-10: 0971732108							
4	х		Ham F. M., Kostanic I. (2001). Principles of Neurocomputing for Science & Engineering. Mc							
			Graw-Hill, New York USA. 1-642. ISBN 0-07-025966-6.							
5		x	Heaton J. (2008). Introduction to Neural Networks for C# 2nd Edition. Heaton Research Inc.							
C C			USA, 1-428. ISBN-10: 1604390093.							
6		×	Haston I. (2008) Introductions of Noural Natworks for Java 2nd Edition. Haston Pasaarah							
0		^	Inc. USA. 1-440. ISBN-10: 1604390085							
7	Х		Haykin S. (2009). <i>Neural Networks and Learning Machines</i> ; 3 ^a Edition. Prentice Hall, USA. 1-							
			930. ISBN-100-13-147 139-2.							
8		х	Omondi A. R., Rajapakse J. C. (2006). FPGA Implementation of Neural Networks, Springer,							
			Dordrecht, The Netherlands, 1- 360. ISBN -10: 0-387-28485-0 (HB).							
9		х	Pedroni V. A. (2004). Circuit Design with VHDL, MIT Press, Massachusetts USA, 1-363.							
			ISBN 0-262-16224-5.							
10		×	Principa I Fuliano N R Lefebure C W (1999) Neural and Adaptive Systems:							
10		~	Fundamentals through Simulations, Wiley & Sons, USA 1-672.							
			ISBN-10: 0471351679.							
11		x	Principe J. Lefebyre C. Lynn G. Fancourt C. Wooten D.: Neurosolutions Getting Started							
		~	Manual version 5, NeuroDimension, Inc, USA 2006, on line (19/Nov/2009).							
			http://www.neurosolutions.com/downloads/documentation.html							
12	x		Reed R. D. Marks II. R. J. (1999) Neural Smithing: Supervised Learning in Feedforward							
	~		Artificial Neural Networks, The MIT Press, USA, 1-352.							
			ISBN-10: 0262181908							
13		x	Zell A., Mamier G., Voot M. et all: (1995), Stuttoart Neural Network Simulator User Manual							
			version 4.2; University of Stuttgart, Germany, , 1-350. on line (19/Nov/2009).							
			http://www.ra.cs.uni-tuebingen.de/SNNS/UserManual/UserManual.html.							

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

TEACHER EDUCATIONAL PROFILE PER LEARNING UNIT

1. GENERAL INFORMATION

ACADEMIC UNIT:	Escuela Superior de Cómputo.						
ACADEMIC PROGRAM:	Ingeniería en Siste	emas Computacionales	LEVEL				
FORMATION AREA:	Institutional	Basic Scientific	Professional	Te In	rminal and itegration		
ACADEMY: Ingeniería	de software.	LEARNING UNIT: U	Insupervised Neura	al Network	(S.		

SPECIALTY AND ACADEMIC REQUIRED LEVEL: Master or PhD. in Computer Science or Electrical Engineering

2. AIM OF THE LEARNING UNIT:

The student builds computer systems of information clustering and pattern classification based on Unsupervised Neural Networks technology.

3. PROFFESSOR EDUCATIONAL PROFILE:

KNOWLEDGE	PROFESSIONAL EXPERIENCE	ABILITIES	APTITUDES
 Concepts and learning algorithms of neural networks. Techniques for design and simulation of neural networks. Settlement Pattern classification problems. Function approximation using neural networks Knowledge of the Institutional Educational Model. English. 	 One year experience in the design of systems based on neural networks Two years experience in handling groups and collaborative work A year experience in the Institutional Educational Model. 	 Analysis and synthesis. Leadership. Decision making. Conflict Management. Group management. Verbal fluency of ideas. Teaching Skills Applications of Institutional Educational Model. 	 Responsible. Tolerant. Honest. Respectful. Collaborative. Participative. Interested to learning. Assertive.

DESIGNED BY

REVISED BY

AUTHORIZED BY

M en C. José Luis Calderón Osorno COORDINATING PROFESOR M en C. Edmundo René Durán Camarillo DR. Luz Noé Oliva Moreno M en C. Ignacio Ríos de la Torre. COLLABORATING PROFESSORS Dr. Flavio Arturo Sánchez Garfias Subdirector Académico Ing. Apolinar Francisco Cruz Lázaro Director